-- Standard functions on rational numbers module PreludeRatio ( Ratio, Rational(..), (%), numerator, denominator, approxRational ) where {-#Prelude#-} -- Indicates definitions of compiler prelude symbols infixl 7 %, :% prec = 7 data (Integral a) => Ratio a = a {-# STRICT #-} :% a {-# STRICT #-} deriving (Eq, Binary) type Rational = Ratio Integer (%) :: (Integral a) => a -> a -> Ratio a numerator, denominator :: (Integral a) => Ratio a -> a approxRational :: (RealFrac a) => a -> a -> Rational reduce _ 0 = error "(%){PreludeRatio}: zero denominator" reduce x y = (x `quot` d) :% (y `quot` d) where d = gcd x y x % y = reduce (x * signum y) (abs y) numerator (x:%y) = x denominator (x:%y) = y instance (Integral a) => Ord (Ratio a) where (x:%y) <= (x':%y') = x * y' <= x' * y (x:%y) < (x':%y') = x * y' < x' * y instance (Integral a) => Num (Ratio a) where (x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y') (x:%y) * (x':%y') = reduce (x * x') (y * y') negate (x:%y) = (-x) :% y abs (x:%y) = abs x :% y signum (x:%y) = signum x :% 1 fromInteger x = fromInteger x :% 1 instance (Integral a) => Real (Ratio a) where toRational (x:%y) = toInteger x :% toInteger y instance (Integral a) => Fractional (Ratio a) where (x:%y) / (x':%y') = (x*y') % (y*x') recip (x:%y) = if x < 0 then (-y) :% (-x) else y :% x fromRational (x:%y) = fromInteger x :% fromInteger y instance (Integral a) => RealFrac (Ratio a) where properFraction (x:%y) = (fromIntegral q, r:%y) where (q,r) = quotRem x y instance (Integral a) => Enum (Ratio a) where enumFrom = iterate ((+)1) enumFromThen n m = iterate ((+)(m-n)) n instance (Integral a) => Text (Ratio a) where readsPrec p = readParen (p > prec) (\r -> [(x%y,u) | (x,s) <- reads r, ("%",t) <- lex s, (y,u) <- reads t ]) showsPrec p (x:%y) = showParen (p > prec) (shows x . showString " % " . shows y) -- approxRational, applied to two real fractional numbers x and epsilon, -- returns the simplest rational number within epsilon of x. A rational -- number n%d in reduced form is said to be simpler than another n'%d' if -- abs n <= abs n' && d <= d'. Any real interval contains a unique -- simplest rational; here, for simplicity, we assume a closed rational -- interval. If such an interval includes at least one whole number, then -- the simplest rational is the absolutely least whole number. Otherwise, -- the bounds are of the form q%1 + r%d and q%1 + r'%d', where abs r < d -- and abs r' < d', and the simplest rational is q%1 + the reciprocal of -- the simplest rational between d'%r' and d%r. approxRational x eps = simplest (x-eps) (x+eps) where simplest x y | y < x = simplest y x | x == y = xr | x > 0 = simplest' n d n' d' | y < 0 = - simplest' (-n') d' (-n) d | otherwise = 0 :% 1 where xr@(n:%d) = toRational x (n':%d') = toRational y simplest' n d n' d' -- assumes 0 < n%d < n'%d' | r == 0 = q :% 1 | q /= q' = (q+1) :% 1 | otherwise = (q*n''+d'') :% n'' where (q,r) = quotRem n d (q',r') = quotRem n' d' (n'':%d'') = simplest' d' r' d r