;;; prims.scm -- definitions for primitives ;;; ;;; author : Sandra Loosemore ;;; date : 9 Jun 1992 ;;; ;;; WARNING!!! This file contains Common-Lisp specific code. ;;; ;;; Helper stuff (define-integrable (is-fixnum? x) (lisp:typep x 'lisp:fixnum)) (define-integrable (is-integer? x) (lisp:typep x 'lisp:integer)) (define-integrable (is-single-float? x) (lisp:typep x 'lisp:single-float)) (define-integrable (is-double-float? x) (lisp:typep x 'lisp:double-float)) (define-syntax (the-fixnum x) `(lisp:the lisp:fixnum ,x)) (define-syntax (the-integer x) `(lisp:the lisp:integer ,x)) (define-syntax (the-single-float x) `(lisp:the lisp:single-float ,x)) (define-syntax (the-double-float x) `(lisp:the lisp:double-float ,x)) (define-syntax (make-haskell-tuple2 x y) `(make-tuple (box ,x) (box ,y))) ;;; Abort ;;; *** Should probably do something other than just signal an error. (define (prim.abort s) (haskell-runtime-error s)) (define (haskell-string->list s) (if (null? s) '() (cons (integer->char (force (car s))) (haskell-string->list (force (cdr s)))))) ;;; Char (define-syntax (prim.char-to-int c) `(the-fixnum ,c)) (define-syntax (prim.int-to-char i) `(the-fixnum ,i)) (define-syntax (prim.eq-char i1 i2) `(= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-eq-char i1 i2) `(not (= (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.le-char i1 i2) `(<= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-le-char i1 i2) `(> (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-lt-char i1 i2) `(>= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.lt-char i1 i2) `(< (the-fixnum ,i1) (the-fixnum ,i2))) (define-integrable prim.max-char 255) ;;; Floating (define-syntax (prim.eq-float f1 f2) `(= (the-single-float ,f1) (the-single-float ,f2))) (define-syntax (prim.not-eq-float f1 f2) `(not (= (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.le-float f1 f2) `(<= (the-single-float ,f1) (the-single-float ,f2))) (define-syntax (prim.not-le-float f1 f2) `(> (the-single-float ,f1) (the-single-float ,f2))) (define-syntax (prim.not-lt-float f1 f2) `(>= (the-single-float ,f1) (the-single-float ,f2))) (define-syntax (prim.lt-float f1 f2) `(< (the-single-float ,f1) (the-single-float ,f2))) (define-syntax (prim.eq-double f1 f2) `(= (the-double-float ,f1) (the-double-float ,f2))) (define-syntax (prim.not-eq-double f1 f2) `(not (= (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.le-double f1 f2) `(<= (the-double-float ,f1) (the-double-float ,f2))) (define-syntax (prim.not-le-double f1 f2) `(> (the-double-float ,f1) (the-double-float ,f2))) (define-syntax (prim.not-lt-double f1 f2) `(>= (the-double-float ,f1) (the-double-float ,f2))) (define-syntax (prim.lt-double f1 f2) `(< (the-double-float ,f1) (the-double-float ,f2))) (define-syntax (prim.float-max f1 f2) `(the-single-float (max (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.float-min f1 f2) `(the-single-float (min (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.double-max f1 f2) `(the-double-float (max (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.double-min f1 f2) `(the-double-float (min (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.plus-float f1 f2) `(the-single-float (+ (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.minus-float f1 f2) `(the-single-float (- (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.mul-float f1 f2) `(the-single-float (* (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.div-float f1 f2) `(the-single-float (/ (the-single-float ,f1) (the-single-float ,f2)))) (define-syntax (prim.plus-double f1 f2) `(the-double-float (+ (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.minus-double f1 f2) `(the-double-float (- (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.mul-double f1 f2) `(the-double-float (* (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.div-double f1 f2) `(the-double-float (/ (the-double-float ,f1) (the-double-float ,f2)))) (define-syntax (prim.neg-float f) `(the-single-float (- (the-single-float ,f)))) (define-syntax (prim.neg-double f) `(the-double-float (- (the-double-float ,f)))) (define-syntax (prim.abs-float f) `(the-single-float (lisp:abs (the-single-float ,f)))) (define-syntax (prim.abs-double f) `(the-double-float (lisp:abs (the-double-float ,f)))) (define-syntax (prim.exp-float f) `(the-single-float (lisp:exp (the-single-float ,f)))) (define-syntax (prim.log-float f) `(the-single-float (lisp:log (the-single-float ,f)))) (define-syntax (prim.sqrt-float f) `(the-single-float (lisp:sqrt (the-single-float ,f)))) (define-syntax (prim.sin-float f) `(the-single-float (lisp:sin (the-single-float ,f)))) (define-syntax (prim.cos-float f) `(the-single-float (lisp:cos (the-single-float ,f)))) (define-syntax (prim.tan-float f) `(the-single-float (lisp:tan (the-single-float ,f)))) (define-syntax (prim.asin-float f) `(the-single-float (lisp:asin (the-single-float ,f)))) (define-syntax (prim.acos-float f) `(the-single-float (lisp:acos (the-single-float ,f)))) (define-syntax (prim.atan-float f) `(the-single-float (lisp:atan (the-single-float ,f)))) (define-syntax (prim.sinh-float f) `(the-single-float (lisp:sinh (the-single-float ,f)))) (define-syntax (prim.cosh-float f) `(the-single-float (lisp:cosh (the-single-float ,f)))) (define-syntax (prim.tanh-float f) `(the-single-float (lisp:tanh (the-single-float ,f)))) (define-syntax (prim.asinh-float f) `(the-single-float (lisp:asinh (the-single-float ,f)))) (define-syntax (prim.acosh-float f) `(the-single-float (lisp:acosh (the-single-float ,f)))) (define-syntax (prim.atanh-float f) `(the-single-float (lisp:atanh (the-single-float ,f)))) (define-syntax (prim.exp-double f) `(the-double-float (lisp:exp (the-double-float ,f)))) (define-syntax (prim.log-double f) `(the-double-float (lisp:log (the-double-float ,f)))) (define-syntax (prim.sqrt-double f) `(the-double-float (lisp:sqrt (the-double-float ,f)))) (define-syntax (prim.sin-double f) `(the-double-float (lisp:sin (the-double-float ,f)))) (define-syntax (prim.cos-double f) `(the-double-float (lisp:cos (the-double-float ,f)))) (define-syntax (prim.tan-double f) `(the-double-float (lisp:tan (the-double-float ,f)))) (define-syntax (prim.asin-double f) `(the-double-float (lisp:asin (the-double-float ,f)))) (define-syntax (prim.acos-double f) `(the-double-float (lisp:acos (the-double-float ,f)))) (define-syntax (prim.atan-double f) `(the-double-float (lisp:atan (the-double-float ,f)))) (define-syntax (prim.sinh-double f) `(the-double-float (lisp:sinh (the-double-float ,f)))) (define-syntax (prim.cosh-double f) `(the-double-float (lisp:cosh (the-double-float ,f)))) (define-syntax (prim.tanh-double f) `(the-double-float (lisp:tanh (the-double-float ,f)))) (define-syntax (prim.asinh-double f) `(the-double-float (lisp:asinh (the-double-float ,f)))) (define-syntax (prim.acosh-double f) `(the-double-float (lisp:acosh (the-double-float ,f)))) (define-syntax (prim.atanh-double f) `(the-double-float (lisp:atanh (the-double-float ,f)))) (define-integrable prim.pi-float (lisp:coerce lisp:pi 'lisp:single-float)) (define-integrable prim.pi-double (lisp:coerce lisp:pi 'lisp:double-float)) ;;; Assumes rationals are represented as a 2-tuple of integers (define (prim.rational-to-float x) (let ((n (tuple-select 2 0 x)) (d (tuple-select 2 1 x))) (if (eqv? d 0) (haskell-runtime-error "Divide by 0.") (prim.rational-to-float-aux n d)))) (define (prim.rational-to-float-aux n d) (declare (type integer n d)) (/ (lisp:coerce n 'lisp:single-float) (lisp:coerce d 'lisp:single-float))) (define (prim.rational-to-double x) (let ((n (tuple-select 2 0 x)) (d (tuple-select 2 1 x))) (if (eqv? d 0) (haskell-runtime-error "Divide by 0.") (prim.rational-to-double-aux n d)))) (define (prim.rational-to-double-aux n d) (declare (type integer n d)) (/ (lisp:coerce n 'lisp:double-float) (lisp:coerce d 'lisp:double-float))) (define (prim.float-to-rational x) (let ((r (lisp:rational (the lisp:single-float x)))) (declare (type rational r)) (make-tuple (lisp:numerator r) (lisp:denominator r)))) (define (prim.double-to-rational x) (let ((r (lisp:rational (the lisp:double-float x)))) (declare (type rational r)) (make-tuple (lisp:numerator r) (lisp:denominator r)))) (define-integrable prim.float-1 (lisp:coerce 1.0 'lisp:single-float)) (define-integrable prim.double-1 (lisp:coerce 1.0 'lisp:double-float)) (define-integrable prim.float-digits (lisp:float-digits prim.float-1)) (define-integrable prim.double-digits (lisp:float-digits prim.double-1)) (define-integrable prim.float-radix (lisp:float-radix prim.float-1)) (define-integrable prim.double-radix (lisp:float-radix prim.double-1)) ;;; Sometimes least-positive-xxx-float is denormalized. (define-integrable prim.float-min-exp (multiple-value-bind (m e) (lisp:decode-float #+lucid lcl:least-positive-normalized-single-float #-lucid lisp:least-positive-single-float) (declare (ignore m)) e)) (define-integrable prim.double-min-exp (multiple-value-bind (m e) (lisp:decode-float #+lucid lcl:least-positive-normalized-double-float #-lucid lisp:least-positive-double-float) (declare (ignore m)) e)) (define-integrable prim.float-max-exp (multiple-value-bind (m e) (lisp:decode-float lisp:most-positive-single-float) (declare (ignore m)) e)) (define-integrable prim.double-max-exp (multiple-value-bind (m e) (lisp:decode-float lisp:most-positive-double-float) (declare (ignore m)) e)) (define-integrable (prim.float-range x) (declare (ignore x)) (make-haskell-tuple2 prim.float-min-exp prim.float-max-exp)) (define-integrable (prim.double-range x) (declare (ignore x)) (make-haskell-tuple2 prim.double-min-exp prim.double-max-exp)) ;;; *** I'm not sure if these are correct. Should the exponent value ;;; *** be taken as the value that lisp:integer-decode-float returns, ;;; *** or as the value that lisp:decode-float returns? (They're ;;; *** not the same because the significand is scaled differently.) ;;; *** I'm guessing that Haskell's model is to use the actual numbers ;;; *** that are in the bit fields ;;; jcp - I removed this since Haskell requires an integer instead of a ;;; fractional mantissa. My theory is that integer-decode-float returns ;;; what Haskell wants without fiddling (except sign reattachment) (define (exponent-adjustment m) (if (eqv? prim.float-radix 2) ;; the usual case -- e.g. IEEE floating point (lisp:integer-length m) (lisp:ceiling (lisp:log m prim.float-radix)))) (define (prim.decode-float f) (multiple-value-bind (m e s) (lisp:integer-decode-float (the-single-float f)) (make-haskell-tuple2 (* (the-integer m) (the-fixnum s)) (the-fixnum e)))) (define (prim.decode-double f) (multiple-value-bind (m e s) (lisp:integer-decode-float (the-double-float f)) (make-haskell-tuple2 (* (the-integer m) (the-fixnum s)) (the-fixnum e)))) (define (prim.encode-float m e) (lisp:scale-float (lisp:coerce m 'lisp:single-float) (the-fixnum e))) (define (prim.encode-double m e) (lisp:scale-float (lisp:coerce m 'lisp:double-float) (the-fixnum e))) ;;; Integral (define-syntax (prim.eq-int i1 i2) `(= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-eq-int i1 i2) `(not (= (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.le-int i1 i2) `(<= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-le-int i1 i2) `(> (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.not-lt-int i1 i2) `(>= (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.lt-int i1 i2) `(< (the-fixnum ,i1) (the-fixnum ,i2))) (define-syntax (prim.int-max i1 i2) `(the-fixnum (max (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.int-min i1 i2) `(the-fixnum (min (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.eq-integer i1 i2) `(= (the-integer ,i1) (the-integer ,i2))) (define-syntax (prim.not-eq-integer i1 i2) `(not (= (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.le-integer i1 i2) `(<= (the-integer ,i1) (the-integer ,i2))) (define-syntax (prim.not-le-integer i1 i2) `(> (the-integer ,i1) (the-integer ,i2))) (define-syntax (prim.not-lt-integer i1 i2) `(>= (the-integer ,i1) (the-integer ,i2))) (define-syntax (prim.lt-integer i1 i2) `(< (the-integer ,i1) (the-integer ,i2))) (define-syntax (prim.integer-max i1 i2) `(the-integer (max (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.integer-min i1 i2) `(the-integer (min (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.plus-int i1 i2) `(the-fixnum (+ (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.minus-int i1 i2) `(the-fixnum (- (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.mul-int i1 i2) `(the-fixnum (* (the-fixnum ,i1) (the-fixnum ,i2)))) (define-syntax (prim.neg-int i) `(the-fixnum (- (the-fixnum ,i)))) (define-syntax (prim.abs-int i) `(the-fixnum (lisp:abs (the-fixnum ,i)))) (define-integrable prim.minint lisp:most-negative-fixnum) (define-integrable prim.maxint lisp:most-positive-fixnum) (define-syntax (prim.plus-integer i1 i2) `(the-integer (+ (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.minus-integer i1 i2) `(the-integer (- (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.mul-integer i1 i2) `(the-integer (* (the-integer ,i1) (the-integer ,i2)))) (define-syntax (prim.neg-integer i) `(the-integer (- (the-integer ,i)))) (define-syntax (prim.abs-integer i) `(the-integer (lisp:abs (the-integer ,i)))) (define (prim.div-rem-int i1 i2) (multiple-value-bind (q r) (lisp:truncate (the-fixnum i1) (the-fixnum i2)) (make-tuple (box (the-fixnum q)) (box (the-fixnum r))))) (define (prim.div-rem-integer i1 i2) (multiple-value-bind (q r) (lisp:truncate (the-integer i1) (the-integer i2)) (make-tuple (box (the-integer q)) (box (the-integer r))))) (define (prim.integer-to-int i) (if (is-fixnum? i) (the-fixnum i) (haskell-runtime-error "Integer -> Int overflow."))) (define-syntax (prim.int-to-integer i) i) ;;; Binary (define prim.nullbin '()) (define (prim.is-null-bin x) (null? x)) (define (prim.show-bin-int i b) (cons i b)) (define (prim.show-bin-integer i b) (cons i b)) (define (prim.show-bin-float f b) (cons f b)) (define (prim.show-bin-double f b) (cons f b)) (define (prim.bin-read-error) (haskell-runtime-error "Error: attempt to read from an incompatible Bin.")) (define (prim.read-bin-int b) (if (or (null? b) (not (is-fixnum? (car b)))) (prim.bin-read-error) (make-haskell-tuple2 (car b) (cdr b)))) (define (prim.read-bin-integer b) (if (or (null? b) (not (is-integer? (car b)))) (prim.bin-read-error) (make-haskell-tuple2 (car b) (cdr b)))) (define (prim.read-bin-float b) (if (or (null? b) (not (is-single-float? (car b)))) (prim.bin-read-error) (make-haskell-tuple2 (car b) (cdr b)))) (define (prim.read-bin-double b) (if (or (null? b) (not (is-double-float? (car b)))) (prim.bin-read-error) (make-haskell-tuple2 (car b) (cdr b)))) (define (prim.read-bin-small-int b m) (if (or (null? b) (not (is-fixnum? (car b))) (> (the-fixnum (car b)) (the-fixnum m))) (prim.bin-read-error) (make-haskell-tuple2 (car b) (cdr b)))) (define (prim.append-bin x y) (append x y)) ;;; String primitives ;;; Calls to prim.string-eq are generated by the CFN to pattern match ;;; against string constants. So normally one of the arguments will be ;;; a constant string. Treat this case specially to avoid consing up ;;; a haskell string whenever it's called. ;;; This function is strict in both its arguments. (define-syntax (prim.string-eq s1 s2) (cond ((and (pair? s1) (eq? (car s1) 'make-haskell-string)) `(prim.string-eq-inline ,(cadr s1) 0 ,(string-length (cadr s1)) ,s2)) ((and (pair? s2) (eq? (car s2) 'make-haskell-string)) `(prim.string-eq-inline ,(cadr s2) 0 ,(string-length (cadr s2)) ,s1)) (else `(prim.string-eq-notinline ,s1 ,s2)))) (define (prim.string-eq-inline lisp-string i n haskell-string) (declare (type fixnum i n)) (cond ((eqv? i n) ;; Reached end of Lisp string constant -- better be at the end ;; of the Haskell string, too. (if (null? haskell-string) '#t '#f)) ((null? haskell-string) ;; The Haskell string is too short. '#f) ((eqv? (the fixnum (char->integer (string-ref lisp-string i))) (the fixnum (force (car haskell-string)))) ;; Next characters match, recurse (prim.string-eq-inline lisp-string (the fixnum (+ i 1)) n (force (cdr haskell-string)))) (else ;; No match '#f))) (define (prim.string-eq-notinline s1 s2) (cond ((null? s1) ;; Reached end of first string. (if (null? s2) '#t '#f)) ((null? s2) ;; Second string too short. '#f) ((eqv? (the fixnum (force (car s1))) (the fixnum (force (car s2)))) (prim.string-eq-notinline (force (cdr s1)) (force (cdr s2)))) (else '#f))) ;;; List primitives ;;; The first argument is strict and the second is a delay. (define-syntax (prim.append l1 l2) (cond ((and (pair? l1) (eq? (car l1) 'make-haskell-string)) `(make-haskell-string-tail ,(cadr l1) ,l2)) ((equal? l1 ''()) `(force ,l2)) ((equal? l2 '(box '())) l1) ;; *** could also look for ;; *** (append (cons x (box y)) z) => (cons x (box (append y z))) ;; *** but I don't think this happens very often anyway (else `(prim.append-aux ,l1 ,l2)))) (define (prim.append-aux l1 l2) (cond ((null? l1) (force l2)) ((and (forced? l2) (eq? (unbox l2) '())) ;; Appending nil is identity. l1) ((forced? (cdr l1)) ;; Append eagerly if the tail of the first list argument has ;; already been forced. (cons (car l1) (if (null? (unbox (cdr l1))) l2 ; don't force this!! (box (prim.append-aux (unbox (cdr l1)) l2))))) (else (cons (car l1) (delay (prim.append-aux (force (cdr l1)) l2)))) )) ;;; Both arguments are forced here. Have to be careful not to call ;;; recursively with an argument of 0. ;;; *** This is no longer used. (define (prim.take n l) (declare (type fixnum n)) (cond ((not (pair? l)) '()) ((eqv? n 1) ;; Only one element to take. (cons (car l) (box '()))) ((forced? (cdr l)) ;; Take eagerly if the tail of the list has already been forced. (cons (car l) (box (prim.take (- n 1) (unbox (cdr l)))))) (else (cons (car l) (delay (prim.take (- n 1) (force (cdr l)))))) )) ;;; The optimizer gets rid of all first-order calls to these functions. (define (prim.foldr k z l) ;; k and z are nonstrict, l is strict (if (null? l) (force z) (funcall (force k) (car l) (delay (prim.foldr k z (force (cdr l))))))) (define (prim.build g) ;; g is strict (funcall g (box (function make-cons-constructor)) (box '())))