;;; This file contains typecheckers for all expressions except vars and ;;; declarations. ;;; From valdef-structs: ;;; valdef, single-fun-def are in type-decls (define-type-checker guarded-rhs (type-check guarded-rhs rhs rhs-type (type-check guarded-rhs guard guard-type (type-unify guard-type *bool-type* (type-mismatch/fixed (guarded-rhs-guard object) "Guards must be of type Bool" guard-type)) (return-type object rhs-type)))) ;;; These type checkers deal with patterns. (define-type-checker as-pat (type-check as-pat pattern as-type (setf (var-type (var-ref-var (as-pat-var object))) as-type) (return-type object as-type))) (define-type-checker irr-pat (type-check irr-pat pattern pattern-type (return-type object pattern-type))) (define-type-checker var-pat (fresh-type var-type (setf (var-type (var-ref-var (var-pat-var object))) var-type) (return-type object var-type))) (define-type-checker wildcard-pat (fresh-type pat-type (return-type object pat-type))) ;;; Constant patterns create a piece of code to actually to the ;;; match: ((==) k), where k is the constant. This code is placed in the ;;; match-fn slot of the const-pat and is used by the cfn. (define-type-checker const-pat (let* ((val (const-pat-value object)) (match-fn (**app (**var/def (core-symbol "==")) val))) (setf (const-pat-match-fn object) match-fn) (type-check const-pat match-fn match-type (fresh-type res-type (type-unify match-type (**arrow res-type *bool-type*) #f) (return-type object res-type))))) (define-type-checker plus-pat (let* ((kp (**int (plus-pat-k object))) (km (**int (- (plus-pat-k object)))) (match-fn (**app (**var/def (core-symbol "<=")) kp)) (bind-fn (**app (**var/def (core-symbol "+")) km))) (setf (plus-pat-match-fn object) match-fn) (setf (plus-pat-bind-fn object) bind-fn) (fresh-type res-type (setf (ntyvar-context res-type) (list (core-symbol "Integral"))) (type-check plus-pat match-fn match-type (type-check plus-pat bind-fn bind-type (type-check plus-pat pattern pat-type (type-unify match-type (**arrow pat-type *bool-type*) #f) (type-unify bind-type (**arrow pat-type pat-type) #f) (type-unify res-type pat-type #f) (return-type object res-type))))))) (define-type-checker pcon (type-check/list pcon pats arg-types (fresh-type res-type (let ((con-type (instantiate-gtype (con-signature (pcon-con object))))) (type-unify con-type (**arrow/l-2 arg-types res-type) #f) (return-type object res-type))))) (define-type-checker list-pat (if (null? (list-pat-pats object)) (return-type object (instantiate-gtype (algdata-signature (core-symbol "List")))) (type-check/unify-list list-pat pats element-type (type-mismatch/list object "List elements have different types") (return-type object (**list-of element-type))))) ;;; These are in the order defined in exp-structs.scm (define-type-checker lambda (with-new-tyvars (fresh-monomorphic-types (length (lambda-pats object)) arg-vars (type-check/list lambda pats arg-types (unify-list arg-types arg-vars) (type-check lambda body body-type (return-type object (**arrow/l-2 arg-vars body-type))))))) (define-type-checker let (type-check/decls let decls (type-check let body let-type (return-type object let-type)))) (define-type-checker if (type-check if test-exp test-type (type-unify test-type *bool-type* (type-mismatch/fixed object "The test in an if statement must be of type Bool" test-type)) (type-check if then-exp then-type (type-check if else-exp else-type (type-unify then-type else-type (type-mismatch object "then and else clauses have different types" then-type else-type)) (return-type object then-type))))) (define-type-checker case (with-new-tyvars (let ((case-exp object)) ; needed since object is rebound later (fresh-monomorphic-type arg-type (type-check case exp exp-type (type-unify arg-type exp-type #f) ; just to make it monomorphic (fresh-type res-type (dolist (object (case-alts object)) (recover-type-error ;;; %%% Needs work (type-check alt pat pat-type (type-unify pat-type arg-type (type-mismatch case-exp "Case patterns type conflict." pat-type arg-type)) (type-check/decls alt where-decls (type-check/unify-list alt rhs-list rhs-type (type-mismatch/list case-exp "Guarded expressions must have the same type") (type-unify rhs-type res-type (type-mismatch case-exp "Case expression alternatives must have the same type" rhs-type res-type))))))) (return-type case-exp res-type))))))) ;;; Expressions with signatures are transformed into let expressions ;;; with signatures. ;;; exp :: type is rewritten as ;;; let temp = exp ;;; temp :: type ;;; in temp (define-type-checker exp-sign (type-rewrite (let* ((temp-var (create-temp-var "TC")) (decl (**valdef (**var-pat/def temp-var) '() (exp-sign-exp object))) (let-exp (**let (list decl) (**var/def temp-var))) (signature (exp-sign-signature object))) (setf (var-signature temp-var) (ast->gtype (signature-context signature) (signature-type signature))) let-exp))) ;;; Rather than complicate the ast structure with a new node for dictSel ;;; we recognize the dictSel primitive as an application and treat it ;;; specially. (define-type-checker app (if (and (var-ref? (app-fn object)) (eq? (var-ref-var (app-fn object)) (core-symbol "dictSel"))) (type-check-dict-sel (app-arg object)) (type-check app fn fn-type (type-check app arg arg-type (fresh-type res-type (fresh-type arg-type-1 (type-unify fn-type (**arrow arg-type-1 res-type) (type-mismatch/fixed object "Attempt to call a non-function" fn-type)) (type-unify arg-type-1 arg-type (type-mismatch object "Argument type mismatch" arg-type-1 arg-type)) (return-type object res-type))))))) ;;; This is a special hack for typing dictionary selection as used in ;;; generic tuple functions. This extracts a dictionary from a TupleDict ;;; object and uses is to resolve the overloading of a designated ;;; expression. The expresion must generate exactly one new context. (define (type-check-dict-sel arg) (when (or (not (app? arg)) (not (app? (app-fn arg)))) (dict-sel-error)) (let* ((exp (app-fn (app-fn arg))) (dict-var (app-arg (app-fn arg))) (i (app-arg arg)) (p (dynamic *placeholders*))) (mlet (((object exp-type) (dispatch-type-check exp))) ; check for exactly one new context (when (or (eq? (dynamic *placeholders*) p) (not (eq? (cdr (dynamic *placeholders*)) p))) (dict-sel-error)) (mlet ((placeholder (car (dynamic *placeholders*))) (tyvar (placeholder-tyvar placeholder)) ((dict-var-ast dict-var-type) (dispatch-type-check dict-var)) ((index-ast index-type) (dispatch-type-check i))) (setf (ntyvar-context tyvar) '()) ; prevent context from leaking out (setf (dynamic *placeholders*) p) (type-unify dict-var-type (**ntycon (core-symbol "TupleDicts") '()) #f) (type-unify index-type *int-type* #f) (cond ((method-placeholder? placeholder) (dict-sel-error)) ; I am lazy. This means that ; dictSel must not be passed a method (else (setf (placeholder-exp placeholder) (**app (**var/def (core-symbol "dictSel")) dict-var-ast index-ast)))) (return-type object exp-type))))) (define (dict-sel-error) (fatal-error 'dict-sel-error "Bad dictSel usage.")) (define-type-checker con-ref (return-type object (instantiate-gtype (con-signature (con-ref-con object))))) (define-type-checker integer-const (cond ((const-overloaded? object) (setf (const-overloaded? object) '#f) (type-rewrite (**fromInteger object))) (else (return-type object *Integer-type*)))) (define-type-checker float-const (cond ((const-overloaded? object) (setf (const-overloaded? object) '#f) (type-rewrite (**fromRational object))) (else (return-type object *Rational-type*)))) (define-type-checker char-const (return-type object *char-type*)) (define-type-checker string-const (return-type object *string-type*)) (define-type-checker list-exp (if (null? (list-exp-exps object)) (return-type object (instantiate-gtype (algdata-signature (core-symbol "List")))) (type-check/unify-list list-exp exps element-type (type-mismatch/list object "List elements do not share a common type") (return-type object (**list-of element-type))))) (define-type-checker sequence (type-rewrite (**enumFrom (sequence-from object)))) (define-type-checker sequence-to (type-rewrite (**enumFromTo (sequence-to-from object) (sequence-to-to object)))) (define-type-checker sequence-then (type-rewrite (**enumFromThen (sequence-then-from object) (sequence-then-then object)))) (define-type-checker sequence-then-to (type-rewrite (**enumFromThenTo (sequence-then-to-from object) (sequence-then-to-then object) (sequence-then-to-to object)))) (define-type-checker list-comp (with-new-tyvars (dolist (object (list-comp-quals object)) (if (is-type? 'qual-generator object) (fresh-type pat-type (push pat-type (dynamic *non-generic-tyvars*)) (type-check qual-generator pat pat-type-1 (type-unify pat-type pat-type-1 #f) (type-check qual-generator exp qual-exp-type (type-unify (**list-of pat-type) qual-exp-type (type-mismatch/fixed object "Generator expression is not a list" qual-exp-type))))) (type-check qual-filter exp filter-type (type-unify filter-type *bool-type* (type-mismatch/fixed object "Filter must have type Bool" filter-type))))) (type-check list-comp exp exp-type (return-type object (**list-of exp-type))))) (define-type-checker section-l (type-check section-l op op-type (type-check section-l exp exp-type (fresh-type a-type (fresh-type b-type (fresh-type c-type (type-unify op-type (**arrow a-type b-type c-type) (type-mismatch/fixed object "Binary function required in section" op-type)) (type-unify b-type exp-type (type-mismatch object "Argument type mismatch" b-type exp-type)) (return-type object (**arrow a-type c-type)))))))) (define-type-checker section-r (type-check section-r op op-type (type-check section-r exp exp-type (fresh-type a-type (fresh-type b-type (fresh-type c-type (type-unify op-type (**arrow a-type b-type c-type) (type-mismatch/fixed object "Binary function required" op-type)) (type-unify exp-type a-type (type-mismatch object "Argument type mismatch" a-type exp-type)) (return-type object (**arrow b-type c-type)))))))) (define-type-checker omitted-guard (return-type object *bool-type*)) (define-type-checker con-number (let ((arg-type (instantiate-gtype (algdata-signature (con-number-type object))))) (type-check con-number value arg-type1 (type-unify arg-type arg-type1 #f) (return-type object *int-type*)))) (define-type-checker sel (let ((con-type (instantiate-gtype (con-signature (sel-constructor object))))) (mlet (((res-type exp-type1) (get-ith-type con-type (sel-slot object)))) (type-check sel value exp-type (type-unify exp-type exp-type1 #f) (return-type object res-type))))) (define (get-ith-type type i) (let ((args (ntycon-args type))) ; must be an arrow (if (eq? i 0) (values (car args) (get-ith-type/last (cadr args))) (get-ith-type (cadr args) (1- i))))) (define (get-ith-type/last type) (if (eq? (ntycon-tycon type) (core-symbol "Arrow")) (get-ith-type/last (cadr (ntycon-args type))) type)) (define-type-checker is-constructor (let ((alg-type (instantiate-gtype (algdata-signature (con-alg (is-constructor-constructor object)))))) (type-check is-constructor value arg-type (type-unify arg-type alg-type #f) (return-type object *bool-type*)))) (define-type-checker cast (type-check cast exp _ (fresh-type res (return-type object res)))) ;;; This is used for overloaded methods. The theory is to avoid supplying ;;; the context at the class level. This type checks the variable as if it had ;;; the supplied signature. (define-type-checker overloaded-var-ref (let* ((var (overloaded-var-ref-var object)) (gtype (overloaded-var-ref-sig object)) (ovar-type (var-type var))) (when (recursive-type? ovar-type) (error "Implementation error: overloaded method found a recursive type")) (mlet (((ntype new-vars) (instantiate-gtype/newvars gtype)) (object1 (insert-dict-placeholders (**var/def var) new-vars object))) (return-type object1 ntype))))